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Redundant disk arrays provide a way for achieving rapid recovery from media fail-

ures with a relatively low storage cost for large scale database systems requiring high
availability. In this paper we propose a method for using redundant disk arrays to
support rapid recovery from system crashes and transaction aborts in addition to their

ff • role in providing media failure recovery. A twin page scheme is used to store the parity
COD information in the array so that the time for transaction commit processing is not de-
0 • graded. Using an analytical model and simulation results. we show that the proposed

ME- method achieves a significant increase in the throughput of database systems using re-
a dundant disk arrays by reducing the number of recovery operations needed to maintain

the consistency of the database.
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1 Introduction

In a database system. rapid recovery may he ziecessarv for restoring the database to a consistent

state after a failure. Several types of failures can occur. The most typical are transaction aborts

which can be due to program errors, deadlocks, or can be user initiated. When a transaction

aborts, the recovery manager has to restore all database pages modified by the transaction to their

previous state. The second type of failure is a system crash. In this case system tables maintained

in main memory are lost. The recovery mechanism has to UNDO all updates made to the database

by transactions that were active when the crash occurred and to REDO modifications performed

by complete transactions and not yet reflected, in the database at tle time of the crash.

Another type of failure is media failure. One common way to deal with this type of failure is

by periodically generating archive copies of the database and by logging updates to the database

performed by committed transactions between archive copies into a redo log file. When a media

failure occurs the database is reconstructed from the last copy and the log file is used to apply

all updates performed by transactions that committed after the last copy was generated. In such

a case, a media failure causes significant down time and the overhead for recovery is quite high.

For large systems, e.g., with over 50 disks, the mean time to failure (MTTF) of the permanent

storage subsystem can be less than 25 days'. %Mirrored disks have been employed to provide rapid

media recovery [1). However. disk mirroring incurs a 100% storage overhead which is prohibitive

for many applications. Redundant Disk Array (RDA) organizations [3. 101 provide an alternative

for maintaining reliable storage. However, even when disk mirroring or RDAs are used. archiving

and redo logging may still be necessary to protect the database against operator errors or system

software design errors.

In this paper. we present a technique that expioits the redundancy in disk arrays to support

recovery from transaction anld ,YstvniU ailu,, r ie ;i(id" tiotn to providing fa.:.t media tcovery. This

is achieved b% using a twill page schlnllo tOr "stOriml tihe palrity informariom ruakit i it possible to

'Assnming an MTTF of 31),m0i) hours for cach disk.
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keep the old version ()f the paritv dlong wiit i he new versioin. 1 lie ud vor.sion oi I lie parily is u."ed

to undo updates performed by aborted t raiisactions or by transactions interrupted 6y a svsteni

failure.

In Sections 2 and 3 we briefly review several techniques for transaction recovery in database

systems and discuss two RDA organizations. In Section 4. we present our database recovery scheme.

The results of our performance analysis are detailed in Section 5. Finally, in Section 6. we show

some simulation results using data from a. real application.

2 Recovery Techniques

Recovery algorithms typically use some form of logging or shadowing. In the logging approach

[41, before a new version (after-image) of a record or page is written to the database, a copy of

the old version ( before-iinagc) is placed into a sequential log file. If a tranisaction aborts or the

system crashes, the log file is analyzed and the state of the database is restored. In the shadowing

approach the update of a page is placed into a new physical page on disk [6, 91. The physical pages

containing the old versions are released after all updates of the committing transaction have been

written to disk. One problem with the shadowing approach is dynarnic mapping since it requires

maintaining a very large page table which leads to high I/O overhead during normal processing.

Another problem is the disk scrambling effect which decreases the sequentiality of disk accesses.

In describing and in analyzing our niethod. we will use the following taxonomy of database

recovery algorithms introduced by Haerder and Reuter [5]. They classify recovery algorithms with

respect to the following four concepts:

Propagation 2 of updates. The propagation strategy can be I1 TOIIC' in which case any -et

of updated pages can be ) ropage ,,( I o t I I t ie I aýtlal;as I itn one at I olic actiot. Iit t li, -. I TO.111(' case.

propagation of updates can be i -terrulple(t i Iw a sVyt em crash aid dla ablhi., pages are iij)da ted-i i-

2Propagation to the database means that lite jew version Is visible to highcr level .-oltware. t'pdatlts can It.

written to disk without being propagated e.shadowing).
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place.

Page replacement. Two policies can be used: the STEAL policy allows pages modified by

uncommitted transact ions to be propagated to the database before end-of-r ran.action EOT,:rhe

opposite policy is referred to as -'STEAL. No UNDO recovery is necessary with a -'STEAL policy.

EOT processing. Two categories exist: the FORC'E discipline requires all pages modified by

a transaction to be propagated before EOT; the opposite discipline is called -'FORCE.

Checkpointing Schemes. Checkpointing is used to propagate updates to the database in

order to minimize the number of REDO recovery actions to be performed after a crash. In the

Transaction Oriented Checkpointing (TOC) scheme, a checkpoint is generated at the end of each

transaction. This is equivalent to using the FORCE discipline in EOT-processing. Two other types

of checkpoints can be used: Transaction Consistent Checkpoints (TCC) are generated during quies-

cent periods where no transactions are being processed, Action Consistent Checkpoints (ACC) are

less restrictive and require that no update statements are processed during checkpoint generation.

3 Redundant Disk Arrays

3.1 Data Striping

Striped disk arrays have been proposed and implemented for increasing the transf,- bandwidth in

high performance I/O subsystems [7. 8, 13]. In order to allow the use of a large number of disks in

such arrays without compromising the reliability of the I/O subsystem. redundancy is sometimes

included in the form of parity information. Patterson et al. [10] have presented several possible

organizations for Redundant Arrays of Inexpensive Disks (RAID). One interesting organization is

RAID with rotated parity in which blocks of da~ta are interleaved across V disks while the parity

of the .V blocks i.s writicvi on the .\N ' I d1i.-k. The parity is rotated over iih +ct of I, iii r1'r

to avoid contention on the parity disk. Figure I shows the array organization with four disks. The

organization allows hoth large (roll stripe) concurrent accesses or small (individual disk) accesses.
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Figure 1: R\AID with rotated parity on four disks.

DOG Q0QQ 3D0 D11 D21

D00
D01 U-1.3

!;i}i~iiii~ii!P 2i2:)1i?~~ P 3 1

Figure 2: Parity striping of disk arrays.

In this paper, we concentrate on small read/write accesses. For a small write access, the data block

is read from the relevant disk and modified. To compute the new parity, the old parity has to be

read, XORed with the new data and XORed with the old data. Then the new data and new parity

can be written back to the corresponding disks. Stonebraker 0 al. [(-1] have advocated the use of

a RAID organization to provide high availability in database systems.

3.2 Parity Striping

Gray et al. [3] studied ways of using an architecture such as RAID in on-line transaction processing

(OLTP) systems. They found that because of the nature of 1/O requests in OLTP systems, namely a

large number of small accesses, it is not, convenient to have several disks servicing the same request.

Hence, the organization shown in Figure 2 was proposed. It is referred to as parity striping. It

consists of reserving an area for parity on each disk and writing data sequentially on each disk

without interleaving. For a group of N + 1 disks. each disk is divided into N + 1 areas one of these

areas on each di.sk Is reserved fOr parlitv a ii lie other areas cont.1aiii data. d atia r'•ill .Ni

ditterent disks are grotipe(l toget her in a /iarl! ilrOi p and their parity is writ ten on the tparily area

of the N + l" disk.
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4 RDA-Based Recovery

In the remainder of this paper, we consider an IO subsysteni that is a collection of redundant disk

arrays. The organization of the arrays being either parity striping, ,r d(ata striping. ý RAID with

rotated parity). In the case of data striping we assume that a large striping unit is used in order to

ensure that I/0 requests will typically be serviced by a single data disk. We also make the foilowing

assumptions: Communication between main memory and the I/0 subsystem is performed using

fixed size pages; Database pages are updated in place which implies that propagation is -A TOMIC:

A STEAL policy is used thus allowing modified pages to be propagated before EOT.

4.1 General Description of the Approach

RDA-based recovery makes use of the parity information present in the disk arrays to undo updates

performed by aborted transactions. However, the parity is not sufficient by itself to undo all updates

performed by an aborted transaction. Updates that cannot be undone using the parity are dealt

with using one of the traditional recovery schemes.

A page parity group is the set of pages that share the same parity page. In the following. unlebs

there is ambiguity, we will use the term parity group to denote a page parity group. A parity group

can be in one of two states: clean or dirty. A parity group is dirty when one of its data pages has

been modified by a transaction and the modified version has been written back to the database

before the transaction modifying it commits (using the notation of Haerder and Reuter. the page

has been stolen from the buffer). Otherwise lhe parity group is called clean. Only one modified data

page per parity group can be written back to the database by uncommitted t ransactions without

UNDO logging. If additional pages in the parity group have been modified and need to be written

back to the database then their before-images must be logged first. A dirty parity group goes back

to the clean state when the transaction that caused it to become dirty commits. Figure 3 shows

the state transition diagram of a parity groip. A table in main inenory cont;ta i ts hie nutim bers of all

parity groups that are iI lIe (lirlt V Mat. Ii also colntains t he itllill),er oh 1ihe dat a t)ag, within the
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Transaction T modifies page Di and Di is

written back to rtle database before EOT

T rereferences D,.

modifies it and D,
is written back to

the database
before EOT

Transaction T commits

Figure 3: State transition diagram of a page parity group.

group that caused the group to be in the dirty state and the number of the parity page holding the

updated parity. Only log V bits need to be used to store the data page number and one bit for the

parity page number. The table is used to check whether a page updated by an active transaction

can be written back to disk without UNDO logging.

When a transaction updates a page. that page can be written back to the database without

UNDO logging if its parity group is clean or if its parity group is dirty and the update is for the

same page that caused the group to iiove into the dirty state. i.e.. the salie page has been updated.

stolen from the buffer then rereferenced bY the same transaction. updated and stolen again from

the buffer before EOT 3 . Note that this does not affect the degree of concurrency or interfere with

the locking policy used in the system. We do not specify when a transaction can or cannot modify

a page. We only specify when a modified page can be written back to disk without UNDO logging.

If a single parity page is used, then when a group becomes dirty the old parity information has

to be kept in the parity page to be able to recover in case of a transaction failure. That would

mean that when the transaction commits. the new parity has to be recomputed in order to update

the parity page. That would require reading all the data pages in the group in order to compute

the new parity. To avoid that problem a twvin p)age .•chenie is used for the parity pages. F lie basic

mechanism of the twin page scheme is as follows: one of' lie paritv pages always contains tlie valid

Normallv such an evewl s.houldh nt occur o liti .ince bulfer inaillaa ellenl algorithill' ate t.ol •ipposed to replace

a page that will be referenced again in dle lear tutre.
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Figure 6: TILe contents of a page parity group.

updated since when the group is dirty it is iecessary to maintain a current parity page reflecting

the actual parity of the data on disk and an 'old'" parity page that would be used to recover the

uncommitted data page Di in case of a transaction abort. In all cases, when writing a data page

to disk the corresponding parity page(s) must be updated first.

4.2 Twin Page Management

The twin parity pages are stored on different disks. This is necessary in order to be able to perform

transaction recovery following a disk failure. In order to identify which of the twin parity pages

contains the valid parity information, a. tiniestaamp is stored in the page header. The page with

the highest timestamp contains the valid parity information. When an update is undone after a

transaction or system failure, the timestamp of the current parity page is reset to 0. Algorithm

Current-Parity shown in Figure 7 selects the current parity page. When a data page is updated

both parity pages are read and one of them is selected for modification. Then the parity is computed

and the modified parity page is written back to disk. In order to avoid reading both parity pages.

a bit map can be maintained in main memory indicating which is the current parity page for each

of the parity groups in the database. However such a bit map may not survive a system crash.

Hence following a crash that destroys the man,, algorithm Current-Parity will have to be used to

identify the current parity page and to reconstruct the bit map. In this case. two bits would have

to be used in the bit map for each parity g-roup to code the three possible states: parity page P is

the current parity page, parity page lW' is the current parity page or the information is not available

and algorithm CurrentParity has to be tiEsd. Following a. sysieteI crash a Iaeý'k,,rouiiid process

that runs during idle period•s of the -viN.eiil call be initiated to reconsstruct the hit map.

nTUlSt be wrmtten lto a log tile.



CurrentParity( l)g )
begin 1Read twill pl rity l)i-gQ, in Ianrty groiip 1)g:

if Timestanip( I') > Timestami)(IP) then
cirreiltParity - P:

else
('urreitt-Parity - P-.

end

Figure 7: Algorithm Current-Parity determines the current parity page.
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C: committed; 0: obsolete; I: invalid; W: working

Figure 8: State transition diagram of the twin parity pages.

Each of the twin parity pages can be in one of four states: committed. obsolete, working or

invalid [16]. A parity page is committed when it contains the last committed parity update. It is

obsolete when it contains old committed parity information. It is in the working state when it has

been updated by atn active transaction. and it is in the invalid state if the last transaction updating

it has aborted. Figure , shows the state traiisition diagram of the twin parity pages.
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4.3 Recovery from System Failure

Following a system crash we need to identify which transactions have to be backed out and which

pages have been modified on disk by those transactions. A Begin-Of-Transaction (BOT) record

needs to be written to a log file after the transaction begins and before it writes back any modified

pages to disk and an EOT record must be written to the log file when the transaction commits.

Modified database pages for which UNDO lo-ging has been performed, can be recovered by reading

their before-images from the log. Modified database pages for which UNDO logging has not been

performed can be recovered using the parity pages. H-owever information on which pages have been

written to the database without UNDO logging has to be saved in permanent storage. To solve

this problem, a technique similar to the one used in TWIST [11] can be employed. In TWIST,

a twin page scheme is used to store all database pages, no before-image logging is performed and

the same problem of identifying which pages to undo after a crash is encountered. The solution

makes use of a log chain which consists of pointers stored in the page headers that link together

pages modified by the same active transaction. In our case. only modified pages written back to the

database before EOT without UNDO logging will be part of the log chain. The head of the chain

though has to be logged along with the transaction id. [/0 operations to maintain the log chain

can be hidden behind regular 1/0 req ulest-. a• d do not affect signnifica itlY ,vstelll performance.

5 Performance Analysis

In order to evaluate the benefit of RDA-recovery. we develop an analytical model to evaluate

transaction throughput for different algorithms. Since the cost of maintaining parity information

in a system with redundant disk arraYs is relatively high. we do not advocate the use of RDAs

.sohly or theI '([rp. t of" lilpprlu iltu , trI .llaci li•to anl d Ct'e.h reo'wer.. \V lo,)k ,It ;h I )I , 'lie l of

using RDA recovery in a system tihat alreadYv neds R.DAs for the pulrpose of rapid iIedia recovery.

We do tlhi.- by comparing the throughpul of sy.,\'eIms using traditional recovery algorithInns and
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redundant disk arrays to systemns with tle anme recovery algorith ins ini conilination with RD.-\

recovery. We consider both page and record logging and it each case we examine two different

rcoverY algorit hums amid ovaitl.,le tile iuimtirovoiiieil achieved by adding RDA recoverY to thenm. A>.

far as ,tori,_ is concernled. the extra cost involved lin using RDA recovery is that of' the twill page

schemn, for the parity which is ( 100/.N )(( ol the initial data storage cost.

RDA recovery reduces the aimount of '.N DO logging and hence is appropri xte for systems using

update-in-place which implies -ATO.'IHC' propagation and a STEAL policy for page replacement.

We therefore restrict ourselves to the analysis of such algorithms. Within this class of algorithms

we examine both the FORCE and ,-FORCE strategies for EOT-processing. For algorithms of the

type -A TOMI(..STEA L. F'ORCE. only a TO1 checkpointing policy makes sense. For algorithms

of the type -A TO.IlC'. S'EAL. -- ORCE. both A(('or TO( checkpoints could be used however

algorithms using AC'C checkpointing were shown to outperform those using the TCO type5 [12].

Hence we only look at the former type of checkpointing.

We use the same basic model as the on2 introduced by Reuter in his evaluation of the perfor-

mance of several database recovery techniques [121. We assume that the system is I/O bound and

therefore we look only at the niuber of I/0 requests required to perform a given operation. W\e

also assume tha& the system is runining conti tioiusly with no periodic shutdown. This implies that

all cleanup activities required by the algorithmn are accounted for in the cost calculations instead

of assuming they are performed by some background process or during shutdown periods.

The workload considered consists of a set of P transactions executing concurrently in the system.

Transactions are of two types: itpdatf or rotri( ral. The fraction of update transactions is f,. Each

transaction accesses .; database page.. TI'hle fract ionl of 'accessed pages I hat ate nodified bY aifl update

transaction is p,,. To characterize the beihavior of tile database bIlfer. we ue IIe counIIuIiality C'

which denotes time probabilitv that a. page reqi ted lbv an ittcomnlin I raiisact ion i- present in tile

buffer. The number of page fraimes in tie 1',uffer is denoted l, 1B. It is assitnmed that the bitf er

'Also TCC' ,heckpoititiiig co(-0 'raict:, ,Oui r ki- 1tn ,,)11011 of ;I (Ollittli oislk rulill h ,gyV tcmli micle it retllIwres the

estabblishment of a iiliiesce-iI point whver, il iill;,tla;ll t l jilltiti.- are pr-,t'unt i th el yMPIII

12



is sufficiently large so that once a transaction has referenced a page, the page will remain in the

buffer until it is no longer needed by the transaction 6 .

The cost of recovery after a system crash is denoted by c, and is measured by the number of

page transfers between main nmeneorv and lhe disk subsystem required to perform recovery. The

cost of executing a transaction is denoted by ct. The transaction throughput r, is defined as the

number of transactions processed during an availability interval. An availability interval T is the

period between two system crashes. Since all cost measures are evaluated in terms of number of

I/O operations, we assume that the availability interval is measured in units of page transfers'.

If checkpointing is used then the length of a checkpointing interval is denoted by I and is also

measured in units of page transfers. The cost, of generating a checkpoint is denoted by c.. Assuming

that the crash occurs in the middle of a checkpointing interval, the number of page transfers available

for processing transactions in an availability interval is T - c, - c,((T- c. - 1/2)/1). Hence the

throughput is given by:

,' = ((T - c5 )( I - ce/I) + c,/2)/ct

We assume that c,. is independent of 1. lieuce thie optimal checkpointing interval can be easily

derived from the following equation [12]:

d,'i dc, •I T c)c/•) O

- (1/cf) - (1 - c-I) + (T 1)(_dl

Let c, denote the cost of updating a retrieval transaction and c,, that of an update transaction.

Then ct can be expressed as follows:

,'1 = ( I - f, )C. + fc..

cr itself inchtmles two cornioneInts: the cost of reading pages that are not found in the database

6'rIie page could still be ieplaced before tilie I Illisaclitol ,om nits if a S.TEAL policy is ilsed, however if it is replaced
it will lint be rerefer,.aeed 1). thb. le a;iIl tot i .

".%Ia t lieii ti:ac llv I ( al be( delitcidl 1s. [olloaws 1 = h'nigtfhl of avwilability it ,.erval ill secoilds
tI ,e to 1 rairster a page io/froil disk ill scolTds

1:ý



buffer and the cost of writing lack the replaced pages if they have been modified. flence:

Cr = C 1-C') + fa•S( I - C')p,,, (2)

where PN denotes the probability that the replaced page was modified and o denotes the number

of page transfers necessary to perforini one write to the disk array. a is equal to 3 or 4 depending

on whether or not the old data page is in the buffer at the time of writing the new data. For co.

we have two additional components which represent the cost of logging the transaction (cj) and the

cost of backing out the transaction (cb) in the case where an abort occurs. Hence:

c11 = .q I - C') + (.t( I - C)pf + c1 + PbC-. (3)

where Pb denotes the probability of an abort.

5.1 Evaluation of the Probability of Logging

We consider a set of K pages that have been modified by active transactions and we compute the

expected value of the size of the subset of pages that can be written back to the database without

UNDO logging. V is the number of data pages in a parity group and S is the total number of data

pages in the database. We assumne that the A" pages a-re randomly chosen from the S pages in the

database. Note that by using data striping (RAID) with a. large striping unit or parity striping. any

seauentiality in database accesses will act in favor of our scheme by distributing the pages accessed

over distinct parity groups.

The parity groups in the database are numbered from 1 to S/,. Let X,, 1 < i < S/.V, be

the random variable whose value is I if one of the A' pages is a member of parity group i., and 0

otherwise. Let X be the random variable denoting the number of parity groups that contain all K

pages. X is also the II Iimbi r of pasge, that l'a i h1 directly writ ten balck to tlho database ,inc0 0on4

page per parity group can be written back. We have:

X = Z .

I-I.



Since the K pages are assumed to be randoinly chosen, each parity group ha. hile same probability

of being accessed by those K page references. Hence the X,'s are identically distributed. Therefore.

the expected value of X is EV] V= E[X,] = E[N\]. Since .\I is a Bernoulli randoin variadle.

E[XI = Pr(XI = 1) and E[XI = sI-Pr(X, =0)). which can be written: E[X1 = 1 (1 -

Hence if K modified. "'uncommitted" pages are to be written to the da-tabase, the probability of

having to log one of those pages is given by:

pi- E[X]/AK = I- -S (1 (4)

5.2 Page Logging

5.2.1 Algorithm of the Type -IATOMIC, STEAL, FORCE, TOC

With the FORCE discipline, the checkpoint is taken at the end of each transaction. The cost of

checkpointing is therefore accounted for in the cost of logging. In the model. we set c, = 0. Given

our assumption that pages are not rereferenced by the calling transaction after they have been

replaced in the buffer. the cost of writing and logging a page will be the same whether the page is

stolen from the buffer before transaction commit or whether it stays in the buffer until EOT and is

then logged and written to the database. Hence we will account for all the costs involved in logging

the pages and writing them back to the datal)ase as part of the cost of logging. This allows us to

set Pm = 0 in the expressions for c, and c,. The expression for cl is:

cl = 3 x sp,, + 4 x (2spu) + 4 x 4

The first term is the cost of writing the pages back to the database. Each write to the disk array

costs thre, I/O oporations since, with the IVOl( 'E discipline, tlhe old data is kept in th, heuffer

until EOT for the purpose of UNDO logg;ing. The second term is the cost of writing to the UNDO

and REDO log file•s. REDO in formalion is needed only in the case where a;ii operator error or

a system software error daniages more thaii one disk in the disk array. The log files are stored

15



separately which makes reading the log to ackotit aborted transactionu kes costly. The last terni

in the expression of cl is the cost of writing BOT and EOT records to each of the log files.

The probability of having to log a page with RDA recovery is dependent on the number IA of

pages written back to the database by incomplete transactions. We assume that when a transaction

writes back a page to the database before committing, the other concurrent transactions are halfway

through writing their own modified pages. Therefore A" is equal to half the total number of pages

modified by concurrent update transactions. Hence the probability of logging is given by Equation 4

in which K is replaced with' P-sf,,p,,/2. With RDA recovery, the formula for the cost of logging

becomes:

c' = (3 + 2pi)sp,, + 4(.sp,, + sp~pj + 4) + 4(pj - p"Pu)

The major difference with cl is that UNDO logging has to be performed only when the parity

group is dirty, i.e., with probability pi. The term 2pt is added to :3 to account for the fact that

when writing to a dirty parity group both parity pages need to be updated9 . The last term in the

expression of ce denotes the cost of writing the log chain header to the log. The header is normally

written along with the BOT record in the same page except when the first page written bv the

transaction to the database has to be logged and not all pages updated by the transaction have to

be logged.

To evaluate cb we a.ssume that a transactlion aborts in the middle of processing Its pages and

that the other concurrent update transactions have also logged half their modified pages. The

UNDO log has to be read up to the BOT record of the aborting transaction.

Cb = (p,,S/ 2 )( Pf,1 ) + Pf. + 4(p,,S/ 2 ) + 4

The first term is the number of before-images that have to be read from the log. The second term

is the number of BOTF/EOOT records to I), reach. The t.hiird te(rni is iiie iii cc ,,r'of )age transfers,

"Page logging implies thlie use ol pfage lockiing an (I It hen Ihe sets of pages modified by concllc•Ivr-n upate I ranlsact Iions
are disjoint.

"9We asume that log file pages and data pages a;eioc not mixed in the same parity groups.
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to and from the database to undo tie i(odilications performed by tlie aborting transaction and

the last term accounts .for the writing of at rollback record. With 1R DA recovery lie above fornuinla

becomes:

c' = (p~pjp/2)Pf, + (pi - 1P' )Pf,. + Pf, + (ps/2)(6pi + 5( 1 - pt)) + -1

In the first term the number of logged before-images to be read is now multiplied by pt. The

second term is the expected number of log chain headers to be read from the log. The other major

difference is in the fourth term. It is due to the fact that, when recovering a page that has been

logged, up to six I/O operations might be necessary since its parity group may still be dirty". On

the other hand, if the page has been written to the database without being logged, it is necessary

to read both parity pages in its parity group and the "new" data page and then overwrite the

database page with the old da~ta and modify the state of the parity page from working to invalid

by resetting the timestainp in its header. Hence five I/O operations will be necessary in the latter

case.

After a system crash. only UNDO recovery needs to be performed. Hence the formula for c,

contains the cost of reading the UNDO log file up to the BOT record of the oldest transaction alive

at the time of the crash and then overwriting the modifications. The work of the oldest transaction

alive overlapped with the work of some committed transactions therefore the log records for half

the work of about 2Pf• transactions need to be read. Hence the expressions for c, and c' are:

c. = Pf,(,,p,, + 2) + 4( Pf,,p,,.s/2)

c' = Pf,,(.spupI + 2(pt - p"" ) + 2) + Pf, (pu.s/ 2 )(4pi + 5( 1 - ps)) + S/NV

The term S/.V is an upper bound for the cost of reconstructing the bit map for the current parity

page.

"1I0n this instance and ill other In.Slalices ill Ilct h.'valiaioni %v. \e . c ant tipper hoimid l o hr th coýt ý imolvid ill RDA

recovery in order to keep Ihikius simple. hi.s will hcad to a co1t sevat'ive estimnale of fit. wichlil of oiur ||' Inl hod.
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Figure 9: Results for -,ATOMIC, STEAL, FORCE. TOC

We evaluate the algorithms in two different environments depending on the frequency of update

transactions. Figure 9 shows the throughput as a function of the couirrunality C' in a system with

high update frequency and in a. system with high retrieval frequency. As expected the improvement

in throughput using RDA recovery is much more significant in the high update frequency environ-

ment. For the latter environment and for C = 0.9 the increase in throughput is about 42%. All the

values for the different parameters of the model, except for N. were taken from [12]. These values

are: B = 300, S = 5000, N = 10. P = 6. Pb = 0.01 and T = 5.106. For the high update frequency

environment, s = 10. f,, = 0.8 and p,, = 0.9 while for the high retrieval frequency environment.

s = 40. f,, = 0.1 and p,, = 0.3.

5 2.2 Algorithm of the Type -A.4TOMI(', STEAL, -'FORCE, .4CC'

In this case, at EOT. before- and after-images of modified pages are written to the log but the

modified pages are not written back to the database. They remain in the buffer until they Nr,"

replaced. IEI )O recovery has to be perforied after a svstem cra.sh and I A( ('checkpointing is used

to reduce the anmount of IIEI)) durintg crash recovery.

First we nee(l to evaluate To do (so. w<e need to compute the nuniber of transactions that
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successively reference a page during its life in tile database buffer. If we look at the stream of

references to a page by successive transactions we call see that with probability C' the page is

referenced when it is in the lu ifer aid with prolbahility -t ' it is referenced whenl it i,, not in thel

buffer. Hence the number of references to the page during its life in the buffer follows a geometric

distribution with parameter C which implies that the average number of references to the page

while it is in the buffer is 1/(1 -C). Since the probability of a page being modified by a transaction

that references it is fp, the probability of a replaced page being modified during its life i, the

buffer isi 1 :

Pin = - (1 - fp.)/(-C)

The cost of logging is simply the cost of writing before- and after-images of modified pages and

the BOT/EOT records to the log:

cl = 4 (2 .sp• + 2).

With RDA recovery, pages that have been stolen from the buffer before EOT do not have to have

their before-images logged. Therefore we need to evaluate the p obability p, for a page being stolen.

The number of references that could cause a given page to be stolen is (1 - C)s(P - 1) and the

probability that any one of those references causes the replacement of the page is 1/(B - Cs).

Hence the formula for ps is:

-( " 1 )(1-c)s(P-1)

In the formula for pl. the value of A' is P..f,, p,.p,/2. The before-image of a modified page will not

be logged with probability p,( I - pl). Hence the cost of logging with RDA recovery is:

cl = 4 (sp,, + .spj( I - p.( 1 - p)1) + 2) + 4(pj - pi

For the cost of backing ouit a tran.actilon. one difference with lhe FORICE ý('hlenle is that tile

log file contains both before- ;nd aller-ilniages whilch will be readii m i1 li] l1() l re(ord( of lie

"The same equation for p,, was derived ii [12. iwoig i •lighI.i y different ;irgu ent.
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aborting transaction is found. Another difference is that. with probability C. the modified pages

to be undone are still in the buffer. Ilence:

Cb = 2 x (p,,.s/ 2 )( Pf],) + Pf,, + 4 p,(61/2 )( I - C') + 4

With RDA recovery, the cost of transaction backout becomes:

c' = 2x(ptsS/2)(Pf,)+Pf,+Pf,(pL-pfSPjP'l )+p,( s/ 2 )((4+ 2 pL)( 1-C)( 1-ps)+6pspt+ 5 ps( l-pj))+ 4

The cost of performing a checkpoint for -,RDA and for RDA is given by:

cc = -1( Bp,,, + 2),

c' = (4 + 2pt)(Bpm + 2).

To evaluate the cost of recovery after a crash. we assume that a crash occurs in the middle of a

checkpoint interval. All transactions executed since the last checkpoint have to be redone. Let r.

denote the number of transactions executed during a. checkpoint interval. r, is given by rc = I/ce

and the expression for c, is:

c, = (r,/2)f.(c,/4 + 4._p,,) + Pfu(ct/4 + 4(s/2)p,, - 1)

The -I term corresponds to the EOT record which is accounted for in cj/4 but is not read. The

cost of recovery from a crash with the RDA recovery technique is:

c' = (r'/2)f.(ct/4 + 4.p,,) + PfIL(c/-l + (.,/ 2 )p,,(4(1 - Ps) + 4 p.-Jp + 5ps(l - Pt)) -,) + S/,.

The value of the optimal checkpointing interval I is obtained by plugging the expression for c, in

Equation 1. This yields:

I = (2ctc,(T - Pf,,(cl + 4(s/2)p,,) - Pf,/(f(ci + )

The formula for I in the case of ID\ Arecovery is derived in a. similar fashioi. Tlhe value of ,n in the

expressions of C,. aid (,,, is I for -11 1).\ and I + 21, for 1 1).\ bIcca use wit I1hle -F()I?(" disciplilne.

when replacement takes p)lace tie ohl version of tile dakta is not available any mt ore iII I lie butfer.
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Figure 10: Results for --A TOMIC, STEAL, -"FORCE. A4CC

Figure 10 shows the results for both environments. It can be seen that the improvement is

not significant in this case. However the interesting result is that while without RDA recovery.

the -FORCE. ACC type algorithm outperforms the FORCE, TOC' scheme, when RDA recovery

is used, the situation is reversed and the latter algorithm outperforms the former by a. significant

margin.

5.3 Record Logging

In this section we look at recovery algorithms in which only modified records are logged. The

unit of transfer between main memory and secondary storage is still a page however, when logging

is performed, logged records are encapsulated into pages and then written to the log file. Some

additional parameters of the systeni need to be introduced for the analysis of record logging: d

denotes the number of update statements per transaction: r denotes the average length (in bytes)

of a long log entry such as a data record: e denotes the average length of a short log entry such

as a table entry: 6, denotes the length of I lhe BOT and EOT records: 1p, denotes the length of a

p hysical page: I,, de lotes thl lenlgt h of a loo cliaiii hIeader. The values for thlie first five parameters

are taken from [12). 'h'ese values are: I 3 IM.or high updale frequenlcy environments and d 8
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for low update frequency environments, r = 100. ( = 10, It = 16 and 1p = 2020. The value for 1h

was set to 4. Assuming that each update statement causes one long log entry and that .s > d. the

average length of a log entry can be derived -12]:

L = tdr + (. - d)e)/.

5.3.1 Algorithm of the Type -,ATOMIC, STEAL, FORCE, TOC

With record logging, the locking granule can be less than a page. We assume that record locking

is used in order to enhance concurrency. This implies that the total number of pages modified by

a given set of P concurrent transaction is not the same as for the above algorithms for which page

locking was assumed. We will denote this number by s,,. An expression for s. is derived in the

Appendix. The value of K in the expression of pi is s,/2. We assume that group commit is used

so that log records from different transactions can be grouped in the same page and written to the

log. The derivations of the cost equations are similar to those in Section 5.2.1. We simply list the

equations without detailed explanation.

cl = 3sp,. + 4 x 2 ( 2 1h, + sp,,(lbc + L))/11 ,

el = (3 + 2 pl)spu + 4( 2 1b, + sp,,(lb, + L))/lp + 4( 2 1b, + sp,(lbc + L)p, + (I), + lh)(pt - p)P"))/l,

Cb = Pf(bc + sP,,(1bc + L)/2)/Ip + 4(p,,/2) + 4

Cb = Pf.(Ibc + sp.(Ibc + L)p 1/2 + (lbc + lh)(PI - psp))/Ip + (pus/2)(6pt + 5(1 - PI)) + 4

c, = Pfu(21bc + SPN(lbc + L))/Il + 4Pf.(p,,q/2)

c = Pf,,(21bc + sp,(Ibc + L)pi + 2(lb, + lh)(P1 - Pt ))/l, + (Pfps/2)(4p1 + 5(1 - ps))

Figure 11 shows the throughput for the FORCE. TOCtype of algorithms with and without RDA

recovery as a function of the communality in the buffer for the case of record logging.

5.3.2 Algorithm of the Type -ATOMIIC, STEAL, --FORCE, ACC

The cost equations for this case can be derived using the results of Sections 5.2.2 and 5.3.1. The

value of A' in the expression Ior/M is .•,,i,/2.
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Figure 11: Results for -ATOMIC. STEAL. FORCE. TOC. in the case of record logging.

ci = 4(21bc + sp.(bc + 2L))/1p

c, = 4 (21bc + S•,,(lbc + L(2 - p((l - Pt))) + (lbc + lh)(pI - pSPIPS1 ))/IP
Cb = Pf,,(ci/8) + 4p,(s/2)(1- C) + 4

cb = Pf,,(cS) + p,,(s/2)((- + 2pi)(1 - C)(1 - p5 ) + 6pp' + Sp 5(1 - pi)) + -

c. = (r,1/2)f,(ct/-4 + 4..1,,,) + Pf,,(c1/4 + 4p,,(.s/ 2 ))

c1 = (rc/2)f,,(cj'/4 + 4 .',, ) + Pf,,(,;'/4 + p,,(.S/2)(5ps( 1 - p,) + 4(1 - p3 ( I - pl))))

The equations for c, and c' are the same as in Section 5.2.2. The equations for cr and c, need to

be modified to account for the extra cost involved in logging modified records in pages stolen from

the buffer before EOT. The modified record of a stolen page needs to be written to the log before

the page can be replaced. Let pi denote the proportion of replaced pages modified by uncommitted

transactions. We have pi = s',/(B - Cs). where s:• is the number of pages in the buffer modified

by the concurrently executing transactions as seen by an incoming transaction. S., is obtained by

replacing P with P - I in the expression for .,. This gives the following equations for c, and c'.

the equations for (,, and r,, are obtained ii a similar fashion:

c,. ~ ~ C = .( - )+ 1.1( 1 - C)(1),, + 2pý)

C,. = . +l - (')+.l(I - (')(p, + 2p,p1)
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Figure 12: Results for -,ATOM'IC, STEAL, -'FORCE, .4CC, in thle case of record logging.

Figure 12 shows the throughput for the -'FORCE. .ACC type of algorithms with and without

RDA recovery as a function of the communality in the buffer for both evaluation environments.

Unlike the page logging case, -',FORCE, ACC scheme performs much better than the FORCE. TOC

scheme for the range of values of C encountered in typical applications [2]. Also, for the -,FOR CE.

AC'C algorithm, thle increase in throughput achieved by using RDA recovery is higher than for tile

same algorithm with page logging. This is Ihe case because. with record logging, the cost of logging

the updates of a stolen page is high relatively t~o the cost of logging non stolen pages and RDA

recovery reduces that cost by eliminating the need for logging in most cases. For example, for the

high update frequency environment and for C = 0.9, the increase in throughput is about 14c..

The benefit of RDA recovery increases with the amount of work performed by each transaction.

Figure 13 shows the percent increase in throughput achieved by RDA recovery as ar fuction of the

number of pages accessed by each tran.action (in) for the high update frequeaucy nenvironment with

C = 0.9.
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6 Experimental Evaluation of FORCE. TOG Algorithms

We have conducted soine experiments to corroborate the findings of our analytical model. \Ve have

used data from anl operational oLTP systemi. niianely a Tandem NonStop system. The data were

extracted from log files generated by the Triansaction Monitoring Facility (T.NF)41.5] during normal

syvstem operation. The log enitries contained t ranisact ion status information, before andl --fter imiages

of modlified data. names of accessed files and disks as wvell as timing information. Using the log

entries, we constructed a trace of ulpdate accesses p~erformed by each transactio,. before it commits

or aborts.

Using this data. we simulated thle behavior of the database buiffer. the recoverY algorith ni and

the 1/0 subsystem. As in the analytical model. we assumed that the system wa~s 1/0 bound anid

hence we ignored cpui processing timnes amid accounted only for the cost of p~erforminig 1/O. However

in the simulationis, we did not simply couint t lie number of 1/0 operations performned. but rather we

simulated the exectit jom of the 1/0 requests iii the dhisk arra~y. We have simulatedl a p~arity striping

orgaiiizailu ll. .s ilice ille d;lt;1  Jul 1Iui m iii,11 . I II 1iii 11iiili block 1ifeii'11 1ý Vii ce ,\ *if,, IIpI ( li p rorlmt)11 i111("

of a, data striping, organizat ion to he 'iimmillar to t hat of' parity -striping. 'I'le dikk v' ramlieters umsedl

ini thle Simiulatiomns are shmowni ini Table 1. 'Ilme dat abase accessed inl ouri 1 race, rvesidcd omi live dis.k~s.
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Table 1: Disk parameters.

Max. latenicy 16.6 ms
Max. oeek 47 ins
tracks per platter 1260
sectors per track 52
bytes per sector 3512
number of platters 1.5

We assumed that the log file is stored on a separate disk array.

The data available to us did not include any read access information. Thus it was not possible

to use it to evaluate -•FORCE. .(CC algorithms because, for these algoritlinis. the improvement

afforded by RDA recovery is dependent on the frequency of replacement of modified pages and

hence requires a detailed simulation of the buffer behavior. Without a trace of read accesses we

could not obtain reliable simulation results for those algorithms. However. for FORCE. TOC

algorithms, page replacement does not affect the cost of recovery operations as much as in the

-,FORCE, ACCcase. Therefore we were able to use the available data to obtain simulation results

for such algorithms. Since our analytical niodel did not show much promise for RDA recovery in

the case of FORCE. TOC'algorithnis with record logging, we concentrated instead on page logging.

We did not simulate recovery from system crash since none occurred in the interval during which

the data was collected. Hence the throughput rt of the system was taken to be the reciprocal of the

average cost per transaction ct. c, was measured as the total cost (disk usage time) of executing

the I/O requests in the disk array system divided by the number of transactions. Figure 14 shows

the measured throughputI2 of FOI?('E. MOC(algorithms with and without R DA recovery in the

case of page logging as a function of tie iiniber ( B) of frames in the buffer.

An LRU buffer replacement policy was assumed. The hit ratio ranged from 777, for B = 50

to 97(7f. for B = 200. [lie improvement in tihroughl)t decreases from 39X, for 11 = 50 to 2s"/; for

B = 100 and then increases slowly as tB incroases to reach about 30(7( for I = 200. T1he reason f0r

"12For clarity, we m ltlliplied the thlroighwlithli 'alh• bY' a colista•lit factor.
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Figure 14: Empirical results for FORCE. TOC algorithms with page logging.

the decrease in the first part of the curve is that for small values of B. some pages in the buffer are

replaced more than once which increases the amount of logging in the -,RDA case. For B > 100.

pages in the buffer are replaced at most once. hence the amount of logging remains about constant

as B increases while the amount of I/O to the database continues to decrease. Hence. as B goes

from 100 to 200. the savings due to RDA recovery become more significant relative to the overall

I/0 cost.

7 Conclusions

In this paper, we have presented a scheme that uses redundant disk arrays to achieve rapid recovery

from media failures in database systems and simultaneously provide support for recovery from

transaction aborts and system crashes. The redundancy present in the array is ex p loited to allow

a large fraction of pages modified by active transactions to be written io disk anmm updated i] place

without the need for undo logging thus red ucing the number of recovery actions performed by tlie

recovery component. Tle method uses a twin pag scheme to store the parity information so Ihat

it can be efficienttly used ini trallsact loll ii ll() rocovery. The extra storage ulsed is about ( l00/N.)1S

of Iive size of the datalm se. .•. h iiig the iiiiieber ofi disks in tOle arra•.
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W'e used a detailed analytical miod(el to evalhate the benefit of our scheine in a systein equipped

with redundant disk arrays. We found that. in the case of page logging, a FORCE. TOO algorithm

combined with RDA recovery significantly mtlperforms a FORCE. TOCGalgorithtn without RDDA

recovery as well as -,FORCE. ACC type of algorithms. In the case of record logging, we found that

a -,FORCE, ACCalgorithm performs best and that the addition of RDA recovery to it improves

significantly its performance especially for transactions with a large number of updated pages. We

also performed simulations using data from an operational OLTP system to validate some of the

results of the analytical model.

Appendix

Derivation of the Formula for s,,

s,, is the number of pages in the buffer updated by a set of P concurrent transactions. Let S~k)

denote the number of pages in the buffer updated by k update transactions. Since there are Pft,

update transactions executing concurrently in the system, we have .s,, = 5 (PfJ). If we number the

Pfh update transaction from I to Pf, in the order of their entry in the system then when the

kth update transaction enters the system. it will find C'sp,, of the sp,, pages it needs to modify

already in the buffer. We make the assumption that out of those pages, C.sp,, X .5k-I )/B belong

to the k - I update transaction already executing in the system"3. Hence. we have the following

recurrence equation:

5 *) (-.5 i- = .- 1 ,( ) - C .Sk-I)/B)

Using S" I) = sp, we obtain .,,= ,5 (1'') .(1 (1 -I .p,,u/B)Pf' ).

313Jpdate transaction.- can share pages because record logging is used instead of pave logging.
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